Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Cell Metab ; 36(5): 1000-1012.e6, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38582087

ABSTRACT

The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.


Subject(s)
Depression , Gastrointestinal Microbiome , Homovanillic Acid , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Depression/drug therapy , Depression/metabolism , Male , Humans , Homovanillic Acid/metabolism , Synapses/metabolism , Synapses/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Neurons/metabolism , Neurons/drug effects , Female
2.
Metabolites ; 14(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38535295

ABSTRACT

Adipose tissue undergoes changes with aging, leading to increased adiposity, inflammatory cell infiltration, reduced angiogenesis, heightened oxidative stress, and alterations in its metabolic function. Regular exercise has been recognized as a powerful intervention that can positively influence adipose tissue health and mitigate the effects of aging. However, the molecular mechanisms underlying the benefits of regular exercise on aging adipose tissue function remain poorly understood. Adipokines released through regular exercise play a potential role in mitigating adipose tissue aging, enhancing the metabolism of glucose and lipids, reducing inflammation and fibrosis, and promoting fat browning and thermogenesis. This review comprehensively summarizes the benefits of regular exercise in addressing the age-related decline in adipose tissue function. Utilizing relevant examples of this approach, we address the possibility of designing therapeutic interventions based on these molecular mechanisms.

3.
Sci Rep ; 14(1): 3175, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326642

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the major causes of liver-related morbidity and mortality globally. It ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) characterized by ballooning and hepatic inflammation. In the past few years, pyroptosis has been shown as a type of programmed cell death that triggers inflammation and plays a role in the development of NASH. However, the roles of pyroptosis-related genes (PRGs) in NASH remained unclear. In this study, we studied the expression level of pyroptosis-related genes (PRGs) in NASH and healthy controls, developed a diagnostic model of NASH based on PRGs and explored the pathological mechanisms associated with pyroptosis. We further compared immune status between NASH and healthy controls, analyzed immune status in different subtypes of NASH. We identified altogether twenty PRGs that were differentially expressed between NASH and normal liver tissues. Then, a novel diagnostic model consisting of seven PRGs including CASP3, ELANE, GZMA, CASP4, CASP9, IL6 and TP63 for NASH was constructed with an area under the ROC curve (AUC) of 0.978 (CI 0.965-0.99). Obvious variations in immune status between healthy controls and NASH cases were detected. Subsequently, the consensus clustering method based on differentially expressed PRGs was constructed to divide all NASH cases into two distinct pyroptosis subtypes with different immune and biological characteristics. Pyroptosis-related genes may play an important role in NASH and can provide new insights into the diagnosis and underlying mechanisms of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Pyroptosis/genetics , Inflammation/pathology
4.
Cell Metab ; 36(2): 438-453.e6, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38325338

ABSTRACT

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.


Subject(s)
Diabetes Mellitus , Paraventricular Hypothalamic Nucleus , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Transcriptome/genetics , Hypothalamus/metabolism , Obesity/metabolism , Diabetes Mellitus/metabolism , Gene Expression Profiling
6.
Nat Protoc ; 19(5): 1311-1347, 2024 May.
Article in English | MEDLINE | ID: mdl-38307980

ABSTRACT

As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.


Subject(s)
Biosensing Techniques , Lactic Acid , Biosensing Techniques/methods , Animals , Humans , Lactic Acid/metabolism , Lactic Acid/analysis , Mice
7.
J Biol Chem ; 300(2): 105601, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159860

ABSTRACT

Hepatocyte plays a principal role in preserving integrity of the liver homeostasis. Our recent study demonstrated that Kindlin-2, a focal adhesion protein that activates integrins and regulates cell-extracellular matrix interactions, plays an important role in regulation of liver homeostasis by inhibiting inflammation pathway; however, the molecular mechanism of how Kindlin-2 KO activates inflammation is unknown. Here, we show that Kindlin-2 loss largely downregulates the antioxidant glutathione-S-transferase P1 in hepatocytes by promoting its ubiquitination and degradation via a mechanism involving protein-protein interaction. This causes overproduction of intracellular reactive oxygen species and excessive oxidative stress in hepatocytes. Kindlin-2 loss upregulates osteopontin in hepatocytes partially because of upregulation of reactive oxygen species and consequently stimulates overproduction of inflammatory cytokines and infiltration in liver. The molecular and histological deteriorations caused by Kindlin-2 deficiency are markedly reversed by systemic administration of an antioxidant N-acetylcysteine in mice. Taken together, Kindlin-2 plays a pivotal role in preserving integrity of liver function.


Subject(s)
Cytoskeletal Proteins , Inflammation , Membrane Proteins , Oxidative Stress , Animals , Mice , Antioxidants/metabolism , Homeostasis , Inflammation/metabolism , Liver/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Reactive Oxygen Species/metabolism , Cytoskeletal Proteins/metabolism
8.
Nat Commun ; 14(1): 6047, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770480

ABSTRACT

Inter-organ crosstalk has gained increasing attention in recent times; however, the underlying mechanisms remain unclear. In this study, we elucidate an endocrine pathway that is regulated by skeletal muscle interferon regulatory factor (IRF) 4, which manipulates liver pathology. Skeletal muscle specific IRF4 knockout (F4MKO) mice exhibited ameliorated hepatic steatosis, inflammation, and fibrosis, without changes in body weight, when put on a nonalcoholic steatohepatitis (NASH) diet. Proteomics analysis results suggested that follistatin-like protein 1 (FSTL1) may constitute a link between muscles and the liver. Dual luciferase assays showed that IRF4 can transcriptionally regulate FSTL1. Further, inducing FSTL1 expression in the muscles of F4MKO mice is sufficient to restore liver pathology. In addition, co-culture experiments confirmed that FSTL1 plays a distinct role in various liver cell types via different receptors. Finally, we observed that the serum FSTL1 level is positively correlated with NASH progression in humans. These data indicate a signaling pathway involving IRF4-FSTL1-DIP2A/CD14, that links skeletal muscle cells to the liver in the pathogenesis of NASH.


Subject(s)
Follistatin-Related Proteins , Non-alcoholic Fatty Liver Disease , Mice , Humans , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Follistatin-Related Proteins/genetics , Follistatin-Related Proteins/metabolism , Liver/metabolism , Signal Transduction/physiology , Muscle, Skeletal/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL
9.
J Cachexia Sarcopenia Muscle ; 14(5): 2126-2142, 2023 10.
Article in English | MEDLINE | ID: mdl-37469245

ABSTRACT

BACKGROUND: DJ-1 is a causative gene for Parkinson's disease. DJ-1-deficient mice develop gait-associated progressive behavioural abnormalities and hypoactive forearm grip strength. However, underlying activity mechanisms are not fully explored. METHODS: Western blotting and quantitative real-time polymerase chain reaction approaches were adopted to analyse DJ-1 expression in skeletal muscle from aged humans or mice and compared with young subjects. Skeletal muscle-specific-DJ-1 knockout (MDKO) mice were generated, followed by an assessment of the physical activity phenotypes (grip strength, maximal load capacity, and hanging, rotarod, and exercise capacity tests) of the MDKO and control mice on the chow diet. Muscular atrophy phenotypes (cross-sectional area and fibre types) were determined by imaging and quantitative real-time polymerase chain reaction. Mitochondrial function and skeletal muscle morphology were evaluated by oxygen consumption rate and electron microscopy, respectively. Tail suspension was applied to address disuse atrophy. RNA-seq analysis was performed to indicate molecular changes in muscles with DJ-1 ablation. Dual-luciferase reporter assays were employed to identify the promoter region of Trim63 and Fbxo32 genes, which were indirectly regulated by DJ-1 via the FoxO1 pathway. Cytoplasmic and nuclear fractions of DJ-1-deleted muscle cells were analysed by western blotting. Compound 23 was administered into the gastrocnemius muscle to mimic the of DJ-1 deletion effects. RESULTS: DJ-1 expression decreased in atrophied muscles of aged human (young men, n = 2; old with aged men, n = 2; young women, n = 2; old with aged women, n = 2) and immobilization mice (n = 6, P < 0.01). MDKO mice exhibited no body weight difference compared with control mice on the chow diet (Flox, n = 8; MDKO, n = 9). DJ-1-deficient muscles were slightly dystrophic (Flox, n = 7; MDKO, n = 8; P < 0.05), with impaired physical activities and oxidative capacity (n = 8, P < 0.01). In disuse-atrophic conditions, MDKO mice showed smaller cross-sectional area (n = 5, P < 0.01) and more central nuclei than control mice (Flox, n = 7; MDKO, n = 6; P < 0.05), without alteration in muscle fibre types (Flox, n = 6; MDKO, n = 7). Biochemical analysis indicated that reduced mitochondrial function and upregulated of atrogenes induced these changes. Furthermore, RNA-seq analysis revealed enhanced activity of the FoxO1 signalling pathway in DJ-1-ablated muscles, which was responsible for the induction of atrogenes. Finally, compound 23 (an inhibitor of DJ-1) could mimic the effects of DJ-1 ablation in vivo. CONCLUSIONS: Our results illuminate the crucial of skeletal muscle DJ-1 in the regulation of catabolic signals from mechanical stimulation, providing a therapeutic target for muscle wasting diseases.


Subject(s)
Muscle, Skeletal , Muscular Disorders, Atrophic , Male , Humans , Animals , Female , Mice , Aged , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/metabolism , Muscular Disorders, Atrophic/metabolism , Mitochondria/metabolism
10.
Genes (Basel) ; 14(5)2023 04 24.
Article in English | MEDLINE | ID: mdl-37239325

ABSTRACT

It has been demonstrated that a high salt diet (HSD) increases the risk of cardiovascular disease and metabolic dysfunction. In particular, the impact and molecular mechanisms of long-term HSD on hepatic metabolism remain largely unknown. To identify differentially expressed genes (DEGs) affecting the metabolism of liver tissues from HSD and control groups, a transcriptome analysis of liver tissues was performed in this study. As a result of the transcriptome analysis, the expression of genes related to lipid and steroid biosynthesis (such as Fasn, Scd1, and Cyp7a1) was significantly reduced in the livers of HSD mice. Additionally, several gene ontology (GO) terms have been identified as associated with metabolic processes in the liver, including the lipid metabolic process (GO: 0006629) and the steroid metabolic process (GO: 0008202). An additional quantitative RT-qPCR analysis was conducted to confirm six down-regulated genes and two up-regulated genes. Our findings provide a theoretical basis for further investigation of HSD-induced metabolic disorders.


Subject(s)
Lipogenesis , Transcriptome , Mice , Animals , Lipogenesis/genetics , Liver/metabolism , Gene Expression Profiling , Diet , Lipids , Steroids/metabolism
11.
Proc Natl Acad Sci U S A ; 120(13): e2213857120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36947517

ABSTRACT

Poly(ADP-ribose) polymerase-1 (PARP1) has been reported to play an important role in longevity. Here, we showed that the knockdown of the PARP1 extended the lifespan of Drosophila, with particular emphasis on the skeletal muscle. The muscle-specific mutant Drosophila exhibited resistance to starvation and oxidative stress, as well as an increased ability to climb, with enhanced mitochondrial biogenesis and activity at an older age. Mechanistically, the inhibition of PARP1 increases the activity of AMP-activated protein kinase alpha (AMPKα) and mitochondrial turnover. PARP1 could interact with AMPKα and then regulate it via poly(ADP ribosyl)ation (PARylation) at residues E155 and E195. Double knockdown of PARP1 and AMPKα, specifically in muscle, could counteract the effects of PARP1 inhibition in Drosophila. Finally, we showed that increasing lifespan via maintaining mitochondrial network homeostasis required intact PTEN induced kinase 1 (PINK1). Taken together, these data indicate that the interplay between PARP1 and AMPKα can manipulate mitochondrial turnover, and be targeted to promote longevity.


Subject(s)
Drosophila Proteins , Poly (ADP-Ribose) Polymerase-1 , Poly ADP Ribosylation , Animals , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Longevity/genetics , Muscles/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Serine-Threonine Kinases/metabolism
12.
Sci China Life Sci ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36795181

ABSTRACT

The metabolic benefits associated with long-term physical activity are well appreciated and growing evidence suggests that it involves the gut microbiota. Here we re-evaluated the link between exercise-induced microbial changes and those associated with prediabetes and diabetes. We found that the relative abundances of substantial amounts of diabetes-associated metagenomic species associated negatively with physical fitness in a Chinese athlete students cohort. We additionally showed that those microbial changes correlated more with handgrip strength, a simple but valuable biomarker suggestive of the diabetes states, than maximum oxygen intake, one of the key surrogates for endurance training. Moreover, the causal relationships among exercise, risks for diabetes, and gut microbiota were explored based on mediation analysis. We propose that the protective roles of exercise against type 2 diabetes are mediated, at least partly, by the gut microbiota.

14.
J Sport Health Sci ; 12(1): 45-51, 2023 01.
Article in English | MEDLINE | ID: mdl-33621697

ABSTRACT

Melanocortin 4 receptor (MC4R), the most important monogenetic cause of human metabolic disorders, has been of great interest to many researchers in the field of energy homeostasis and public health. Because MC4R is a vital pharmaceutical target for maintaining controllable appetite and body weight for professional athletes, previous studies have mainly focused on the central, rather than the peripheral, roles of MC4R. Thus, the local expression of MC4R and its behavioral regulation remain unclear. In an attempt to shed light on different directions for future studies of MC4R signaling, we review a series of recent and important studies exploring the peripheral functions of MC4R and the direct physiological interaction between peripheral organs and central MC4R neurons in this article.


Subject(s)
Receptor, Melanocortin, Type 4 , Signal Transduction , Humans , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Signal Transduction/physiology , Body Weight
15.
J Cell Physiol ; 237(11): 4169-4179, 2022 11.
Article in English | MEDLINE | ID: mdl-35998296

ABSTRACT

Poly(ADP-ribose) polymerase 1 (PARP1) plays a key role in genome stability by modulating DNA-damage responses. Activated by DNA interruptions through ultraviolet (UV) exposure, PARylation is synthesized by PARP1 and serves as a survival mechanism for cancer and metabolic diseases. Several strategies including ROS and antimicrobial peptides (AMPs) function in host defenses, while the targeted tissue and mechanism under DNA damage are unknown. Here, we show that DNA damage induces responses specifically in the gut tissue. The knockdown of PARP1 reduces the activation of PARylation. Parp1 knockdown under DNA damage results in over-accumulated ROS and secretion of AMPs through the regulation of Relish, a subunit of nuclear factor-κB (NF-κB). Double-knockdown of Parp1 and Relish specifically in the gut inhibits AMP secretion. In conclusion, the host defense is achieved through ROS accumulation rather than the AMPs under DNA damage. In contrast, the knockdown of PARP1 exacerbates ROS accumulation to a harmful level. Under this circumstance, NF-κb targeted AMP secretion is provoked for host defense. Microbiome and functional analysis provide evidence for the hazard of DNA damage and show variations in the metabolic pathways following Parp1 inhibition. Our findings suggest the notion that PARP1 inhibition contributes to ROS accumulation under DNA damage and its role in NF-κb activation for host defense.


Subject(s)
Gastrointestinal Microbiome , NF-kappa B , DNA/metabolism , DNA Damage , NF-kappa B/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species
16.
Front Endocrinol (Lausanne) ; 13: 887843, 2022.
Article in English | MEDLINE | ID: mdl-35655797

ABSTRACT

High-salt diet (HSD) is associated with dysregulated metabolism and metabolic disorders. Although previous studies have indicated its effect on metabolic tissues, the involving molecular mechanisms are not quite understood. In the present study, we provided a comprehensive transcriptome analysis on multiple metabolic tissues of HSD-fed mouse model by RNA sequencing. We observed that several genes associated with de novo lipogenesis and cholesterol biosynthesis were significantly downregulated in white adipose tissue and liver tissue of HSD mice group, such as Fasn, Scd1, Acaca, and Thrsp. Furthermore, combined with secretome datasets, our results further demonstrated that HSD could alter expression levels of organokines in metabolic tissues, for example, Tsk and Manf, in liver tissue and, thus, possibly mediate cross-talk between different metabolic tissues. Our study provided new insight about molecular signatures of HSD on multiple metabolic tissues.


Subject(s)
Diet , Metabolic Diseases , Animals , Gene Expression Profiling , Lipogenesis , Liver/metabolism , Metabolic Diseases/metabolism , Mice , Nerve Growth Factors
17.
Diabetes ; 71(11): 2256-2271, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35713959

ABSTRACT

In addition to the significant role in physical activity, skeletal muscle also contributes to health through the storage and use of macronutrients associated with energy homeostasis. However, the mechanisms of regulating integrated metabolism in skeletal muscle are not well-defined. Here, we compared the skeletal muscle transcriptome from obese and lean control subjects in different species (human and mouse) and found that interferon regulatory factor 4 (IRF4), an inflammation-immune transcription factor, conservatively increased in obese subjects. Thus, we investigated whether IRF4 gain of function in the skeletal muscle predisposed to obesity and insulin resistance. Conversely, mice with specific IRF4 loss in skeletal muscle showed protection against the metabolic effects of high-fat diet, increased branched-chain amino acids (BCAA) level of serum and muscle, and reprogrammed metabolome in serum. Mechanistically, IRF4 could transcriptionally upregulate mitochondrial branched-chain aminotransferase (BCATm) expression; subsequently, the enhanced BCATm could counteract the effects caused by IRF4 deletion. Furthermore, we demonstrated that IRF4 ablation in skeletal muscle enhanced mitochondrial activity, BCAA, and fatty acid oxidation in a BCATm-dependent manner. Taken together, these studies, for the first time, established IRF4 as a novel metabolic driver of macronutrients via BCATm in skeletal muscle in terms of diet-induced obesity.


Subject(s)
Amino Acids, Branched-Chain , Interferon Regulatory Factors , Muscle, Skeletal , Obesity , Animals , Humans , Mice , Amino Acids, Branched-Chain/metabolism , Fatty Acids/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Metabolome , Muscle, Skeletal/metabolism , Obesity/genetics , Obesity/metabolism
18.
Metabol Open ; 13: 100166, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35198946

ABSTRACT

The NLRP3 inflammasome, as an important component of the innate immune system, plays vital roles in various metabolic disorders. It has been reported that the NLRP3 inflammasome can be activated by a broad range of distinct stimuli, such as K+ efflux, mitochondrial dysfunction, lysosomal disruption and trans-Golgi disassembly, etc. However, there has been no well-established model for NLRP3 inflammasome activation so far, especially the underlying mechanisms for mitochondria in NLRP3 inflammasome activation remain elusive. Given that K+ efflux is a widely accepted nexus for triggering activation of NLRP3 inflammasome in most previous studies, we sought to elucidate the role of mitochondria in K+ efflux-induced NLRP3 inflammasome activation. Here, we demonstrated that inflammation activation by LPS evoked the expression of genes that involved in mitochondrial biogenesis and mitophagy, subsequently mitochondrial mass and mitochondrial membrane potential were also elevated, suggesting the contribution of mitochondria in inflammatory responses. Moreover, we inhibited mitochondrial biogenesis by silencing Tfam and genetic ablation of Tfam abolished the NLRP3 inflammasome activation induced by K+ efflux via release of mitochondrial DNA (mtDNA), as deprivation of cellular mtDNA by EtBr treatment could reverse inflammasome activation induced by K+ efflux. Collectively, we reveal that mtDNA release induced by K+ efflux in macrophages activates NLRP3 inflammasome, and propose that mitochondria may serve as a potential therapeutic target for NLRP3 inflammasome-related diseases.

19.
Protein Cell ; 13(6): 394-421, 2022 06.
Article in English | MEDLINE | ID: mdl-33826123

ABSTRACT

Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.


Subject(s)
Aging , Hypothalamus , Brain/metabolism , Energy Metabolism , Humans , Hypothalamus/metabolism , Obesity/metabolism
20.
Front Immunol ; 12: 784975, 2021.
Article in English | MEDLINE | ID: mdl-34925365

ABSTRACT

Hashimoto's thyroiditis (HT) is an autoimmune disease, and its incidence continues to rise. Although scientists have studied this disease for many years and discovered the potential effects of various proteins in it, the specific pathogenesis is still not fully comprehended. To understand HT and translate this knowledge to clinical applications, we took the mass spectrometric analysis on thyroid tissue fine-needle puncture from HT patients and healthy people in an attempt to make a further understanding of the pathogenesis of HT. A total of 44 proteins with differential expression were identified in HT patients, and these proteins play vital roles in cell adhesion, cell metabolism, and thyroxine synthesis. Combining patient clinical trial sample information, we further compared the transient changes of gene expression regulation in HT and papillary thyroid carcinoma (PTC) samples. More importantly, we developed patient-derived HT and PTC organoids as a promising new preclinical model to verify these potential markers. Our data revealed a marked characteristic of HT organoid in upregulating chemokines that include C-C motif chemokine ligand (CCL) 2 and CCL3, which play a key role in the pathogenesis of HT. Overall, our research has enriched everyone's understanding of the pathogenesis of HT and provides a certain reference for the treatment of the disease.


Subject(s)
Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Hashimoto Disease/immunology , Thyroid Cancer, Papillary/immunology , Thyroid Neoplasms/immunology , Adult , Biomarkers/analysis , Biomarkers/metabolism , Chemokine CCL2/analysis , Chemokine CCL3/analysis , Female , Hashimoto Disease/pathology , Humans , Male , Middle Aged , Organoids , Primary Cell Culture/methods , Proteomics , Thyroid Cancer, Papillary/pathology , Thyroid Gland/immunology , Thyroid Gland/pathology , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...